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Abstract. Since the appearance in 1993, first approaching the Shannon limit.
the Turbo Codes give a new direction for the channel encoding field, especially
since they were adopted for multiple norms of telecommunications, such as
deeper communication. To obtain an excellent performance it is necessary to
design robust turbo code interleaver. We are investigating genetic algorithms as
a promising optimization method to find good performing interleaver for the
large frame sizes. In this paper, we present our work, compare with several

previous approaches and present experimental results.
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1 Introduction

It is known that the encoding block on the transmission scheme is one of the complex
operations. Channel encoding adds redundancy symbols to the message to be
transmitted causing diminution to spectral efficacy of the transmission. The Turbo
Codes (TC) was a new tendency in the channel encoding field and they have become
a reference soon after their introduction. Their original name comes from their first
structure introduced and described in [1], namely concatenated convolutive recursive
systematic codes with iterative decoding.

Turbo codes offer the best compromise between structure (concatenation) and
randomness created by the interleaver. Its characteristic iterative decoding process is
among the principal performance factors of the turbo codes. The significant
characteristics of turbo codes are small bit error rate (BER) achieved even at low
signal to noise ratio (Eb/NO) and the error floor at moderate and high values of
Eb/NO. Previous studies proved that the random interleaver can be in certain cases

more efficient than other channel encoding schemes [2].
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In this paper, genetically evolved interleaver will be compared to random
interleaver by the means of BER to evaluate its efficiency. The increase of the
interleaver size gives better performance and better interleaving gain while worsening
latency. The relation (1) illustrates the influence on the latency
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where R, is the code bit rate, K, stands for the frame size and N, is the number of the
decoding stages. The performance of the turbo codes depends on two principal
parameters, first is the code spectrum, and the second is decorrelation between the
external information at the same number of iterations.

The optimization can be used for the amelioration of performance and the
diminution of the matrix stature with safe performance. This second point is very
interesting for multimedia real-time transmission systems over satellite because the
interleaving matrix makes a considerable diminution of the codec complexity and
delay. Interleaver matrix sizes vary from tens to ten-thousands of bits. It is highly
inefficient to test all the possible input vectors (2% with all the possible interleaver
matrices (N!), requiring 2".N! tests. Therefore, advanced interleaver optimization
methods are required.

Some results based on genetic algorithm exploitation, were previously obtained in
(3] but only for small value of N (N=50), achieving a performance gain of 0.1 dB.
Recent researches [4] focused on larger frame sizes and it means also larger
interleaver length N, which is more promising for real time communication over
satellite. The choice of the objective function was based on the maximizing of the
determinist performance parameter which is free distance. Such optimization is
complicated due the fact that free distance calculation is non-trivial and complex task.

In following, we are using similar parameters and compare our results to
interleavers discovered by the means of previous methods. In the next section is
presented short overview of a turbo code system.

L.1 Turbo Code System

Figure la represents convolutive encoder used in the past experiences, with the
dimension of the memory effect v = 4, constraint length L= (v + 1) =5 and

k _ InputSymbols =1 The encoder is punctured for rate of 1/3 to get
n  OutputSymbols 2
better maximal free distance.

The turbo encoder presented in Figure 1b, is the same as first turbo encoder used
in [S]. It is composed of parallel concatenation of two convolutive systematic
recursive codes connected with an interleaver in between. The rate of such encoder is
1/3.

The first encoder operates directly on the input sequence, denoted by c, of lengt.h
N. The first component encoder has two outputs. The first output, denoted by vy, is
equal to the input sequence since the encoder is systematic. The other output is the

rate ,. -
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parity check sequence, denoted by . The interleaved information sequence at the
input of the second encoder is denoted by ¢,
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Fig. 1. Convolutive encoder (a) and turbo encoder (b)

Only the parity check sequence of the second encoder, denoted by v,, is transmitted.
The information sequence vo and the parity check sequences of the two encoders v,
and v, are multiplexed to generate the turbo code sequence. The overall code rate is

thus 1/3.
In this article will be used the Enhanced Maximum Aposteriori Probability Log

Map soft decoding algorithm, a technique often used for the satellite communication
decoding. More details can be found in [6].

2 Evolutionary Algorithms

Evolutionary algorithms (EA) are family of iterative stochastic search and
optimization methods based on mimicking successful optimization strategies
observed in nature [7, 8, 9, 10]. The essence of EAs lies in the emulation of
Darwinian evolution utilizing the concepts of Mendelian inheritance for the use in
computer science and applications [10]. Together with fuzzy sets, neural networks
and fractals, evolutionary algorithms are among the fundamental members of the class
of soft computing methods.

EA operate with population (also known as pool) of artificial individuals (referred
often as items or chromosomes) encoding possible problem solutions. Encoded
individuals are evaluated using objective function which assigns a fitness value to
each individual. Fitness value represents the quality (ranking) of each individual as
solution of given problem. Competing individuals search the problem domain towards
optimal solution [8]. In the following sections will be introduced general principles
common for all methods belonging to the class of evolutionary algorithms..
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2.1 Evolutionary Search Process

For the purpose of EAs is necessary proper encoding, representing solutions of given
problem as encoded chromosomes suitable for evolutionary search process. Finding
proper encoding is non-trivial problem dependent task affecting the performance and
results of evolutionary search while solving given problem. The solutions might be
encoded into binary strings, real vectors or more complex, often tree-like, hierarchical
structures, depending on the needs of particular application area.

The iterative phase of evolutionary search process starts with an initial population
of individuals that can be generated randomly or seeded with potentially good
solutions. Artificial evolution consists of iterative application of genetic operators,
introducing to the algorithm evolutionary principles such as inheritance, survival of
the fittest and random perturbations. Current population of problem solutions is
modified with the aim to form new and hopefully better population to be used in next
generation. Iterative evolution of problem solutions ends after satisfying specified
termination criteria and especially the criterion of finding optimal solution. After
terminating the search process, evolution winner is decoded and presented as the most
optimal solution found.

2.2 Genetic Operators

Genetic operators and termination criteria are the most influential parameters of every
evolutionary algorithm. All bellow presented operators have several implementations
performing differently in various application areas.

Selection operator is used for selecting chromosomes from population. Through
this operator, selection pressure is applied on the population of solutions with the aim
to pick more promising solutions to form following generation. Selected
chromosomes are usually called parents.

Crossover operator modifies the selected chromosomes from one population to the
next by exchanging one or more of their subparts. Crossover is used for emulating
sexual reproduction of diploid organisms with the aim to inherit and increase the good
properties of parents for offspring chromosomes.

Mutation operator introduces random perturbation in chromosome structure; it is
used for changing chromosomes randomly and introducing new genetic material into
the population.

Besides genetic operators, termination criteria are important factor affecting the
search process. Widely used termination criteria are i.e.:

— Reaching optimal solution (which is often hard to recognize)
— Processing certain number of generations
- Processing certain number of generations without improvement in population

EAs are successful general adaptable concept with good results in many areas. The
class of evolutionary techniques consists of more particular algorithms having
numerous variants, forged and tuned for specific problem domains. The family of
evolutionary algorithms consists of genetic algorithms, genetic programming,
evolutionary strategies and evolutionary programming.
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2.3 Genetic Algorithms

Genetic Algorithms (GA) introduced by Holland and extended by Goldberg are wide
applied and highly successful EA variant. Basic workflow of originally proposed

standard generational GA is:

=S
I. Define objective function
Il. Encode initial population of possible solutions as fixed length binary strings and evaluate
chromosomes in initial population using objective function
Ill. Create new population (evolutionary search for better solutions):
a. Select suitable chromosomes for reproduction (parents)
b.Apply crossover operator on parents with respect to crossover probability to produce
new chromosomes (offspring)
c.Apply mutation operator on offspring chromosomes with respect to mutation
probability. Add newly constituted chromosomes to new population
d.Until the size of new population is smaller than size of current population go back to
a.
e.Replace current population by new population
IV. Evaluate current population using objective function
V. Check termination criteria; if not satisfied go back to lil.

== S —

Many variants of standard generational GA have been proposed. The differences are
mostly in particular selection, crossover, mutation and replacement strategy [8].

3 Designing Genetic Algorithms for Interleaver Optimization

Genetic algorithms have been already used for interleaver matrix optimization.
Durand et al. [4] used customized GA to optimize the interleaver of the size 105,
comparing their results to previous interleaver design techniques. Their genetic
algorithm was fully based on mutation and the crossover operator was due to
complications omitted. The fitness criterion for every interleaver was maximum free
distance.

Rekh et al. [3] presented recently another GA for the interleaver optimization,
introducing 2-point crossover to interleaver evolution process. Nevertheless, the
crossover impact is limited by necessary correction of errors created during crossover
application. The fitness criterion was BER and the size of optimized interleaver 50.

In the following section will be discussed our GA for interleaver optimization and
compared to previous mentioned approaches.

3.1 Interleaver GA Discussion

An interleaver of the dimension N performs a permutation of N input bits and
therefore can be seen as a general permutation of N' symbols. Hence, we encode
interleaver for the purpose of genetic algorithm as permutation oy. An interleaver of
the dimension N performs a permutation of N input bits and therefore can be seen as a

general permutation-of N symbols oy = (i}, iy, ... , in), Where i, € [1, N] and i, # i, for
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all m # n e [1, N]. The application of oy on input vector /y for N = 5 is shown in
relation (2).

[5=(0, 17 0) l, 11 l)
65=(5,3,4,1,2) 2
05=05(15)=(1501 1|0’ l)

The same encoding was used also in [3]. Durand et al. in [4] do not specify their
interleaver encoding, although we can conclude that they used similar interleaver
representation.

We have used two types of selection: roulette wheel selection and for speeding up
the convergence of the algorithm a semi-elitary hybrid selection scheme choosing one
parent by elitary manners and the second by proportional manners of roulette wheel
selection. Mutation is simply realized by swapping positions of two coordinates in oy.
On the contrary, traditional crossover operators (except of uniform crossover) will
corrupt the structure of permutation oy and hence cannot be used without some post
processing used for chromosome fixing. Authors of [4] have fully omitted crossover
and the crossover application in [3] lead to the need to repair every new chromosome
created via crossover. This is a remarkable fact since crossover is referred as the
primary operator for GA [9].

To enable the application of crossover for interleaver optimization, expecting
performance increase, we have investigated the effect of uniform crossover on
convergence ability of the classical interleaver optimizing GA. In the second phase,
we have designed modified GA allowing the use of virtually any crossover operator
for permutation evolution without corrupting the chromosomes. New crossover
friendly GA is based on separation of chromosomes into groups of the same size
called higher level chromosomes, (HLC's). Genetic operators are then applied on
HLC’s while original chromosomes act as genes as shown in Figure 2. We have tested
above introduced techniques on a benchmarking problem consisting of search for an
identity matrix. The results have revealed that GAs with semi-elitary selection and
HLC were most efficient.

The best performing GA was used for interleaver optimization. As fitness criterion
was adopted approach introduced in [3]: average BER, captured after simulated
transmission of several low weight information frames.
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Fig. 2. Traditional population compared with HLC’s

4 Experiments

An experimental framework built upon the 1T++ library' was used to experimentally
evaluate proposed interleaver generation method. We have experimented with 64,
128, 512 and 1024 bit interleavers aiming to optimize in the future as large interleaver

as possible.
The settings for all optimization experiments were:

— GA with HLC and semi-elitary selection

— 100 generations

— probability of crossover 0.8

— population of 5 high level chromosomes per 6 genes

— fitness criterion was minimal BER after simulated submission of 100 random
frames of weight up to 6

— the simulations were performed over additive white Gaussian noise (AWGN)
channel

The AWGN channel is a good model for satellite and deep space communication
links but not an appropriate model for terrestrial links. The evolved interleavers were

"IT++ is available at http:/itpp.sourceforge.net/




Discovering Efficient Turbo Code Interleavers by Genetic Algorithms 63

evaluated by simulated transmission over AWGN channel for Eb/NO e [0, 4] and flat
Rayleigh fading channel for Eb/NO e [0, 6]. Rayleigh fading channel was used as a
reasonable model for tropospheric and ionospheric signal propagation as well as the
effect of heavily built-up urban environments on radio signals [11].

In the ex.periments, GA with classic population and semi-elitary selection were
used. Optimized interleavers were compared to random interleaver taken as reference

by the means of Eb/NO to BER ratio, captured after simulated transmission of 500
random frames.

4.1 Optimization Results

Optimization results are summarized in Figures 3 and 4. In all of them is used
following notation: curve denoted as O/ corresponds to the best interleaver found by
GA with classic population, O2 describes performance of best interleaver found using
GA with HLCs and Rand denotes reference random interleaver. AWGN denoted
curves illustrate experiments over additive white Gaussian noise channel and
Rayleigh curves represent the experimental results measured over Rayleigh channel.
In all figures can be seen that optimized interleavers perform better than reference
random interleaver.
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Fig. 3. 64bit (a) and 128bit (b) interleaver

S Result Discussion

Figure 3a illustrates the binary error rate for an interleaver with the length of 64 bits:
we can observe that an improvement for AWGN channel begin to appear from Eb/NO
= 2dB and becomes more significant for larger Eb/NO values, especially for the
interleaver obtained by second optimization method. Both optimized interleavers
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overperformed the random interleaver. For BER=10" we have an Eb/NO of
approximately 3.25 dB for the random interelaver and 2.75 dB for the second
optimized interleaver achieving gain of 0.5 dB. The trend is valid for Rayleigh
channel experiments as well and the supremacy of interleaver O2 is even more
evident.

For 128 bits interleaver length, we can observe, as shown on Figure 3b, that for
AWGN, the amelioration begins to be significant between the second optimization and
the random interleaver from Eb/N0=2.25 dB, it means for a larger signal noise rate
values. For BER=10" we have Eb/NO equal 2.25 dB for the second optimization and
7.5 dB for the random interelaver having 0.25 dB of gain. For the Rayleigh channel
transmissions. the better performance of O/ and O2 comparing to random interleaver
becomes to be clear for greater EbNO values (>5 dB) and O2 is again best performing

among the three. ;
The gain becomes more considerable for interleaver length of 512bits as shown on

Figure :a, for example in AWGN, we have for BER=10" the Eb/N0=2.75 dB for the
second optimization method while having 3.5 dB for the random interelaver. This
indicates 0.75 dB gain for 512bits length interleaver, which is for this interleaver
length a remarkable result. In Rayleigh channel, the initial BER values are for all
three compared interleavers almost the same while for higher EbNO, interleaver 02
achieves permanent gain over similarly performing O/ and random interleaver.
Similarly, optimized 1024 bit inteleavers, highlighting specially interleaver O2,

shown at Figure 4b outperform reference random interleaver for both, AWGN and
Rayleigh channels.
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Fig. 4. 512bit (a) and 1024bit (b) interleaver

6 Conclusions

In this paper, we discussed the problem of efficient turbo code interleaver
optimization by the means of genetic algorithms. Previous approaches were revised
and novel modifications to existing interleaver optimizing GA improving their
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convergence were introduced. Presented GA modifications are general and can be
used in other application areas as well. Optimized interleavers found by introduced
method were verified and compared to random interleaver by the means of BER
performance. The verification utilized both, AWGN channel and more real-life-like
Rayleigh fading channel. The optimized interleavers outperformed random
interleavers having the interleaver found by presented method total winner by the
means of BER to EbNO ratio in most cases.

In the future we aim to use developed algorithm for the optimization of larger
interleavers and investigate the use of minimum free distance as more competent
fitness criterion. Additionally, we want to employ Rayleigh fading channel model at
the optimization phase and compare obtained interleavers to interleavers evolved over
AWGN channel. Moreover, we are investigating the general process of permutation
evolution since it has numerous applications in computer science (i.e. in data
compression).
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